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Abstract— This paper concerns unpublished results obtained from
the SIMKI (2020) R&D project at the Department of Mechanical
Engineering at Aalen University of Applied Science, Germany. The
following text generally discusses the development results of the Al-
based CNC parameter identification and optimisation tool AICNC.
The identification tool supports the Al-based optimisation of milling
machine process parameters when using unknown material
compositions. The process parameters are determined by a specific test
pattern designed to be automatically analysed in real-time by a pre-
trained perception-based deep learning algorithm. The tool provides
the advantage of obtaining real-time quality information due to Al-
based quality assessment and the automated identification of material-
dependent milling process parameter sets, even for unknown
processing material.
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. INTRODUCTION

HE manufacturing sector plays an important role in the
gross domestic product (GDP) of the European Union [1].
Nowadays, companies in the metal processing industry are
under constant time and cost pressure due to increasing
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international competition. Furthermore, they must comply with
increasingly  strict documentation and environmental
requirements [2], [3]. Reducing material waste and energy
consumption in the production process are crucial for ensuring
the future viability of industrial companies. To increase the
efficiency in handling new processing materials with unknown
mechanical properties, an Al-based CNC parameter
optimization tool (AICNC) has been developed within the
SIMKI research group at the Department of Mechanical
Engineering at Aalen University [4], [5]. The software tool
utilises perception-based deep neural network technology based
on the SqueezeNet architecture [6]. The tool features a process
to automatically predict the necessary CNC milling parameter
settings, e.g. feed and rotation speed of the milling machine, by
analysing predefined test patterns. Within the SIMKI research
activities, a demonstrator was developed that transfers the
theoretical results to an automated software tool that is
applicable under industrial conditions [7]. This simple and cost-
effective solution significantly enhances the efficiency of CNC
milling processes while reducing environmental impact by
minimizing material waste.

Al-Based-Image-
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[Trained DNN]

Fig. 1: AICNC software module infrastructure overview
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Il. GENERAL ASIC FUNCTIONAL

Fig. 1 presents an overview of the software modules and
database components used in AICNC. AICNC utilizes an
adapted deep learning neural network (DNN) that is trained
using specific test patterns of CNC-milling sample parts such
as circles or squares. The DNN can detect parts with inadequate
surface or edge structures and correlate them with the feed and
rotation speed settings applied.

Fig. 2: Left: AICNC image acquisition hardware interface setup;
right: Test pattern generation on the DMU 65 mono Block 5-axis
CNC milling machine reference DMU

The user interface (HMI) has four general interaction tabs for
teaching and evaluating the acquired test patterns using the
built-in DNN. The application includes a semi-automated
image acquisition and image cropping tool that generates
training database images under constant conditions. The trained
DNN can be optimized further using images created during
daily production activities. The HMI interface provides the
ability to capture images, train the network, and classify the
best-fitting combinations of feed and rotation speed for
unknown material combinations.

Table I: Test pattern milling parameter combination properties of the
generic pattern generation for adaptive milling parameter
identification and adaption, at the DMUG5 milling machine.

Generic Pattern Parameter Set-Curricular Surface

Cutting  Feed Dipping Cutting Cooling Milling tool
Speed Feed width  Method
v, 1z 1z DXY

[m/min] [mm/min] [mm/min]  [%]
1 210 802.2 30 50 Water HM, coated 10 mm Z3
2 210 401.1 30 50 Water HM, coated 10 mm Z3
3 210 1604.4 30 50 Water HM, coated 10 mm Z3
4 420 802.2 30 50 Water HM, coated 10 mm Z3
5 420 401.1 30 50 Water HM, coated 10 mm Z3
6 420 1604.4 30 50 Water HM, coated 10 mm Z3
7 105 802.2 30 50 Water HM, coated 10 mm Z3
8 105 401.1 30 50 Water HM, coated 10 mm Z3
9 105 1604.4 30 50 Water HM, coated 10 mm Z3

The final training and pattern assessment results are
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provided using a layer activation map that indicates the
correlated training features of the reference images.
Additionally, the layer activation map representation can also
be used for real-time inline quality control by an inline image
acquisition device. This feature is discussed in further work,
e.g. [12], and is not part of this paper. Fig. 2 on the left provides
an overview of the acquisition infrastructure used during the
test period.
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Fig. 3: Schematic AICNC hardware interfaces and component
representation

The module comprises a consumer market video capture
device with a resolution of 720p, a processing rate of 30 frames
per second (fps), and a field of view (fov) of 68.5°. The
hardware is connected to the AICNC software module at a
distance of 300 mm above the test specimen. To minimize
environmental impact and ensure optimal pattern recognition, a
circular LED illumination system is installed around the capture
area (see Fig. 2, left). Fig. 2 on the right displays a image of the
test pattern generation process using the DMU65 milling
machine. The test pattern comprises of nine distinct areas
obtained by specific combinations of machine-related
parameter settings such as feed and cutting. The procedure was
applied under industrial conditions using the 5-axis CNC
machining centre DMU 65 monoBlock as a reference system
[8]. This method can be applied to various machines and
processes in this sector. To obtain the initial machine parameter
settings, a literature source was used (the machining manual
[9]) to specify the material-dependent initial parameters of the
milling machine. For example, the cutting speed v was set to
210 m/min and the feed f, was set to 802.2 mm/min. This
parameter set can be safely used to obtain sufficient results, but
there is room for increasing the processing speed according to
the desired quality criteria. The literature provides an initial
parameter set, which serves as a starting point for applying the
generic pattern of AICNC. To identify the parameter set that
produces optimum part quality, the test pattern is applied with
eight increasing combinations of cutting speed and milling tool
feed.

Table | presents the generic pattern parameter set used in the
experiment to identify material-dependent processing potential
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based on the predefined machine setting. No changes in content
have been made. The identified potential results in increased
processing speed, leading to significant time and cost savings
compared to the standard parameter settings manually.

Feed 3
RPM 1

Feed 1
RPM 1

Fig. 4: a,c: AICNC test pattern model; b,d: AICNC manufactured test
pattern reference sample probe

Fig. 3 shows the corresponding hardware component context
and provides an overview of the communication and energy
interface setup used in the experiment. The project aimed to
minimize investment and integration costs by using widely
available hardware components and communication interfaces.
In later stages, the software-based compensation can replace the
illumination system to account for environmental disturbances.
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Fig. 5: “Record” tab UX-representation

Fig. 4. provides an exemplary overview of the generated test
patterns and the resulting defect occurrence according to the
machine parameter set of Table I. The pattern layers have a size
of 140 x 140 mm and a thickness of 5 mm. The type of material
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used within the development test procedures was a rigid
Polyvinyl Chloride (PVC) synthetic plastic polymer. The
typical material parameters are density: 1.3 to 1.45 g/cm?,
thermal conductivity: 0.14 to 0.28 W/mK, and yield strength of
1450 to 3600 MPa [9]. The generic circular patterns were
generated with a diameter of 30 mm and the square patterns
with an edge length of 30 mm. According to the reference
values found in the literature, the machine feed can be increased
up to step three to obtain results of equivalent quality to step
one, compare Fig. 4 — circular pattern. The same result is
obtained for the square pattern. According to the square
samples in pattern seven, an increased cutting speed also leads

to adequate quality results.
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This effect was observed during several test runs. The Al-
based parameter prediction tool AICNC automatically clusters
the results and stores the samples in a data space according to
the good/bad Al-based assessment result. The algorithm is now
able to interpolate and provide a material-specific, machine-
optimized parameter set. Fig. 6 represents the pre-processed
training pattern image files generated from each test run of the
milling machine.
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Fig. 7: Left: Generic sample pattern edge and centroid detection
result right: AICNC segmented test pattern reference sample image

I11.  AICNC USER INTERFACE AND WORKFLOW REPRESENTATION

The AICNC user interface workflow is generally divided into
four specific task tabs that guide the user through the necessary
steps. The AICNC application communicates directly with the
hardware-specific image acquisition and clustering methods.
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Additionally, the DNN represents a separate software instance
that is connected to the functional interfaces of the Al training
and assessment tabs, compared to Fig. 7.

In an initial step, the user connects the desired image/video
capture device at the ‘record' tab. This view allows the user to
capture images of the connected device. The “clustering”
method performs a segmentation process that includes
subroutines for image scaling, edge detection, and centroid
detection. The captured images of the generic sample patterns
are counted according to the centroids found by the algorithm.
After the segmentation is finished, the sliced patterns are stored
in a common folder. Specific working folders can be selected
in the 'working folder' tab. The specified working folder
contains the raw image data and the segmented training images.
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The 'parameter prediction’ tab is mainly a user interface that
supports the manual classification process of the captured
training images. The captured and segmented sample patterns
are loaded and analysed by the user. The OK (good) and NOK
(defective) buttons save them to the appropriate DNN training
folders. Finally, the “Al-training” tab uses database images to
train predefined material patterns. To increase the accuracy,
different material types can be used in the DNN pre-training
process. The trained deep neural network (DNN) provides a
feedback value indicating whether the assessed samples meet
the OK or NOK criteria. Additionally, it generates an activation
map of the heat layer, highlighting the significant features of
the generic sample pattern. The activation map (heat activation
layer) is correlated with the backward mapping, which
identifies the important image features of the damaged parts.
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Fig. 8: AICNC Application Workflow

Fig. 7 represents the user view in the 'record' tab. Correctly
captured and segmented images are indicated by green-light
feedback. Additionally, a continuous system log will be created
to validate the user feedback over time. This is important to

correlate differences in the detection accuracy according to the
DNN training process. Fig. 9 represents the AICNC training
and assessment tab. This tab provides access to software
methods for the DNN training procedure. Once the training
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process is complete, the system is compatible with a wide range
of video capture devices. The assessment button segments the
latest captured image and generates a confidential value
indicating whether the captured image is OK or NOK
Additionally, the activation layer display indicates the area and
impact of defects according to the intensity colour overlay
provided by the user interface. The usage of AICNC is divided
into two main user-driven workflows. The initial workflow
targets sample pattern recording and pattern slicing, comp. Fig.
8 left. Folders are automatically generated and each pattern of
the recorded sample probe is sliced into square patterns and
numbered by software. Labelling of each probe is done by the
applicator at the second workflow, comp. Fig. 8 right. The
second workflow concerns the creation of labelled image data
for the DNN training process. The assessed image data will be

saved in the corresponding training folders by software. DNN
training environment and result validation

The DNN training procedure was performed with 30 *good’
rated and 43 ’defective’ rated images. With 75 training
iterations and 150 training epochs. The training PC includes a
Core i5-7600K processor with a 3.79 GHz clock rate and 16 GB
RAM. The operating system is based on WIN 10 Pro. The
training was performed on a single CPU at a period of 4:22
minutes to reach a validation accuracy of 60 %. The DNN
structure is based on the ’SqueezeNet’ architecture with
exchanged input layers. SqueezeNet is a deep neural network
architecture originally developed to reduce the number of
parameters and memory size compared to other neural
networks, see Table Il. This architecture consists of several
Convolutional Layers, Max Pooling Layers, Fire Layers, a
global average Layer, a Fully Connected Layer, and an Output
Layer.
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Fig. 9: Representation of the AICNC Teaching and Assessment tab

The input layer supports images as input with a resolution of
227 x 227 and three colour channels, i.e. for RGB images. The
image is then convolved with a Convolutional Layer with 64
kernels with the dimensions 3 x 3. Behind the Convolutional
Layers, there is a ReLU-activation function and then the output
matrices are passed in a max-pooling layer. After that, there are
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8 so-called Fire Modules. Each of these fire modules consists
of a squeeze layer, an expand layer with a filter dimension of 1
x 1, and an expand layer with a filter dimension of 3 x 3.
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Fig. 10: The architecture of the Adapted Fire Module [10]

The squeeze net consists of a single convolution layer that
reduces the number of input channels to a smaller value. This
reduces the dimensionality of the input and allows for more
efficient processing. The expansion process consists of a
combination of 1 x 1 convolution layers and 3 x 3 convolution
layers that increase the number of channels to a higher level.
This combination allows complex features to be captured
without requiring too many parameters.

After these fire modules follow another Convolutional Layer
and a ReLU activation function, compare Fig. 10. A Global
Average Pooling Layer follows this. A fully connected layer
was added to the network structure. This consists of two layers,
which reduces 1000 parameters to two parameters. From these
parameters, the probabilities for the classes "good" and
"defective" can be calculated with the help of the Softmax
function [10].

Table I1: The architecture of the adapted SqueezeNet DNN [10]

Layer Number Layer Description

1 Input Layer
Convolutional Layer

ReLU-Activation-Function
Max-Pooling
Fire Module 1
Fire Module 2
Max-Pooling
Fire Module 3
Fire Module 4
Max-Pooling
Fire Module 5
Fire Module 6
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13 Fire Module 7

14 Fire Module 8

15 50% Dropout

16 Convolutional Layer

17 ReLU-Activation- Function
18 Global-Average-Pooling
19 Fully-Connected-Layer

In the presented use case, an ADAM-optimization function
was used to optimize the learnable weights and bias
parameters. ADAM-Optimiser is an optimization algorithm
for the gradient descent method. ADAM is a further
development of the RMSProb and AdaGrad optimizers.
However, ADAM also incorporates momentum to improve
convergence speed. After calculating the gradient g, the
moving average of the first and second moments of the
gradients is calculated:

me =By *xme_y + (1 —18) * g, (1.1)

v =Ry v g + (1—B,) * g¢ (1.2)
3, and 3, are the decay factors for the moving average. The
default values are wused for £3,=0.9 and £,=0.999.
Subsequently, this is used to calculate the bias-corrected first
moment estimate:

mg

mn, = ——
ET1-RE

(1.3)

Training Progress 13. (Nov. 2020 10:54:32)

Accuracy (%)

3 & 8 s & 3 x 8 %
T
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VUt

b= @m

(1.4)

The updated parameters can now be calculated based on the
following formula:

_amg
Jvete

6, is the updated vector of parameters at time t. «
corresponds to a fixed step size Element is a small value added
to stability to avoid dividing by zero. The parameter update is
divided by the adaptive learning rate using the corrected
moment estimator and the square root of the corrected second-
moment estimator. The SqueezeNet was trained with a step size
a of 0.0001. In addition, a learning rate schedule of a Drop
factor of 0.7 every 10 epochs was added. An epsilon of 1e-8
was used [11]. A more detailed view at the network structure
can be obtained in Fig. 13. The results of the DNN assessment
are combined in the 'myNDNet-Postprocess’ algorithm and
superimposed on the corresponding pattern image. The
superimposing process allows one to evaluate the results and
identify spots with minor quality. The information is displayed
to the user in a separate view, compared to Fig. 9. A blue
coloration visualizes a good part. The change of colour from
green to yellow to red symbolizes the increasing degree of
damage. Red areas thus indicate defects on the workpiece.

Oy =01 (1.5)

30 iterations
Patience: inf

Other Information

Hard source: Single CPU
Lean e: 8.2354¢-08
Leaming schedule: Piecewise

Defective

L

10z 20 30 40

Loss

50

50 60 70 ;
: 100 150
Iteration
50 60 70  Final
Iteration 100 150

Fig. 11: DNN test pattern training progress and resulting defective test pattern layer activation map

Furthermore, this function provides the possibility to present
and compare an image to a previously trained DNN
classification result. Thus, the teaching process does not need
to be repeated, and validation of the results can be assessed in
minimum time. As mentioned, Fig. 9 right represents the

resulting DNN pre-processed test patterns in combination with
the conclusion sensitivity map overlay. In the left area, the
acquired sample pattern is visible on the right of the originated
pattern file. The graphic on the right hand contains related user
feedback on the Al classification result. It indicates whether the
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submitted milling workpiece is OK or NOK. In addition, the
recursive activation layer image colours defective areas
identified by the DNN. The dark red area of the activation layer
image marks the defective part area. The visualization of the
size and position of part defectives supports fast-track decision
support, whether the part can be reworked or not.

IVV.  AICNC DNN ASSESSMENT WORK-FLOW

The AICNC workflow is divided into two separate
processes. Initially, the DNN training procedure has to be
performed. The training procedure during the development
system tests is semi-automatised. The acquired test pattern is
automatically cut into partial patterns that fit the demand of
the DNN input network layer, compared to Fig. 10. The
network structure is divided into the input layer, a hidden
layer, and a fully connected layer. Finally, the class output is
generated. The application of the used DNN originally targets
object recognition tasks. Fig. 6 displays the reference pattern
cuttings, including fully automatized centroid identification.
The centroid identification algorithm automatically detects the
weighted pattern centre based on the results of the canny edge
detector algorithm, compared [12]. Fig. 6 right displays the
corresponding pattern-cutting images automatically stored in
the training folder by AICNC. The training images are named
with increasing numbers. The training process demands a
cluster of good and a cluster of defective images. With an
increasing number of training images, the reliability of the
DNN assessment results can be increased within the
application of the tool within process usage. Fig. 12 displays
the real-time visualization overlay of the camera-based
perception user interface. For testing purposes, the trained
DNN was additionally implemented in a consumer-market
webcam device.

A §
Fig. 12: DNN training procedure; left: Milled sample pattern sheet;
right: perception-based real-time Al defect marking by recursive
representation of the DNN layer activation

Published online 15-Feb-2024

At least nine individual test patterns were needed within the
experiment, to obtain an initial indication of the desired
machine parameter settings. Fig. 12 left displays the milled test
pattern (camera view), and Fig. 12 right represents the real-
time camera view including activation map overlay. The
camera is generating real-time class-activation map overlay
(heat activation layer) with approx. 15-20 fps and indicates
under the use of phased coloured fields, the occurring extends
of part defectives. Areas with a high amount of edge and
surface defects are marked with a dark red colour and indicate
the degree of activation of the DNN layer according to the
required features of the part.
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Fig. 13: AICNC — DNN layer structure, compare [5]

At this stage, the final system can provide reliable user
feedback that indicates which areas may provide the optimal
milling parameter set. The second column indicates that areas
occur with insufficient activation of neurons. This leads to the
demand to further harden the DNN with extended training data.
Fig. 14 displays the assessed OK and NOK. sample parts. With
the initial samples of 20 patterns, a validation accuracy of 60 %
was reached under laboratory conditions. 20 % false assessed
image patterns and 20 % with no correlation were achieved
within the initial experiment. Nevertheless, not every sample
pattern was classified correctly. Thus, further experiments must
validate the usability of the system. Additionally, an increased
database, generated within the industrial system-usage, will
help to overcome classification problems. Additionally,
different DNN structures will be tested to increase the testing
accuracy. Fig. 14 represents the final assessment and labelling
results by the AICNC-DNN.

Copyright © Authors ISSN (Print): 2204-0595
ISSN (Online): 2203-1731



IT in Industry, vol. 12, no.1, 2024

Published online 15-Feb-2024
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Fig. 14: Initial results of AICNC performance validation

V.CoONCLUSIONS AND DISCUSSION

To validate the success of the DNN training at the initial
training status, a random seed of 20 images of the category
*defective’ was represented and assessed. At the current stage,
the AICNC has been initially trained using a small number of
test patterns. The test results from the perception-based real-
time capturing device provide sufficient results to support
milling parameter identification under industrial conditions. In
future development steps, the AICNC will be trained under
industrial conditions with an extended database. Furthermore,
the network structure has to be replaced by the VGG-19 [13],
amore specialized DNN structure. This network uses 19 layers
and is also mainly used for object recognition. Internal tests
have already shown better results under the use of different
networks. That means that key users will use the software in
customer projects.
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