
 

 

 

Abstract— This paper concerns unpublished results obtained from 

the SIMKI (2020) R&D project at the Department of Mechanical 

Engineering at Aalen University of Applied Science, Germany. The 

following text generally discusses the development results of the AI-

based CNC parameter identification and optimisation tool AICNC. 

The identification tool supports the AI-based optimisation of milling 

machine process parameters when using unknown material 

compositions. The process parameters are determined by a specific test 

pattern designed to be automatically analysed in real-time by a pre-

trained perception-based deep learning algorithm. The tool provides 

the advantage of obtaining real-time quality information due to AI-

based quality assessment and the automated identification of material-

dependent milling process parameter sets, even for unknown 

processing material. 
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I. INTRODUCTION 

HE manufacturing sector plays an important role in the 

gross domestic product (GDP) of the European Union [1]. 

Nowadays, companies in the metal processing industry are 

under constant time and cost pressure due to increasing 

international competition. Furthermore, they must comply with 

increasingly strict documentation and environmental 

requirements [2], [3]. Reducing material waste and energy 

consumption in the production process are crucial for ensuring 

the future viability of industrial companies. To increase the 

efficiency in handling new processing materials with unknown 

mechanical properties, an AI-based CNC parameter 

optimization tool (AICNC) has been developed within the 

SIMKI research group at the Department of Mechanical 

Engineering at Aalen University [4], [5]. The software tool 

utilises perception-based deep neural network technology based 

on the SqueezeNet architecture [6]. The tool features a process 

to automatically predict the necessary CNC milling parameter 

settings, e.g. feed and rotation speed of the milling machine, by 

analysing predefined test patterns. Within the SIMKI research 

activities, a demonstrator was developed that transfers the 

theoretical results to an automated software tool that is 

applicable under industrial conditions [7]. This simple and cost-

effective solution significantly enhances the efficiency of CNC 

milling processes while reducing environmental impact by 

minimizing material waste.  

 

 
Fig. 1: AICNC software module infrastructure overview 
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II. GENERAL ASIC FUNCTIONAL  

Fig. 1 presents an overview of the software modules and 

database components used in AICNC. AICNC utilizes an 

adapted deep learning neural network (DNN) that is trained 

using specific test patterns of CNC-milling sample parts such 

as circles or squares. The DNN can detect parts with inadequate 

surface or edge structures and correlate them with the feed and 

rotation speed settings applied.  

 

 
Fig. 2: Left: AICNC image acquisition hardware interface setup; 

right: Test pattern generation on the DMU 65 mono Block 5-axis 

CNC milling machine reference DMU 

The user interface (HMI) has four general interaction tabs for 

teaching and evaluating the acquired test patterns using the 

built-in DNN. The application includes a semi-automated 

image acquisition and image cropping tool that generates 

training database images under constant conditions. The trained 

DNN can be optimized further using images created during 

daily production activities. The HMI interface provides the 

ability to capture images, train the network, and classify the 

best-fitting combinations of feed and rotation speed for 

unknown material combinations. 

 
Table I: Test pattern milling parameter combination properties of the 

generic pattern generation for adaptive milling parameter 

identification and adaption, at the DMU65 milling machine. 

Generic Pattern Parameter Set-Curricular Surface 

 
Cutting 

Speed 

Feed Dipping 

Feed 

Cutting 

width 

Cooling 

Method 

Milling tool 

 
𝑣𝑧  

[m/min] 

𝑓𝑧 

[mm/min] 

𝑓𝑧 

[mm/min] 

DXY 

[%] 

  

1 210 802.2 30 50 Water HM, coated 10 mm Z3 

2 210 401.1 30 50 Water HM, coated 10 mm Z3 

3 210 1604.4 30 50 Water HM, coated 10 mm Z3 

4 420 802.2 30 50 Water HM, coated 10 mm Z3 

5 420 401.1 30 50 Water HM, coated 10 mm Z3 

6 420 1604.4 30 50 Water HM, coated 10 mm Z3 

7 105 802.2 30 50 Water HM, coated 10 mm Z3 

8 105 401.1 30 50 Water HM, coated 10 mm Z3 

9 105 1604.4 30 50 Water HM, coated 10 mm Z3 

 

 The final training and pattern assessment results are 

provided using a layer activation map that indicates the 

correlated training features of the reference images. 

Additionally, the layer activation map representation can also 

be used for real-time inline quality control by an inline image 

acquisition device. This feature is discussed in further work, 

e.g. [12], and is not part of this paper. Fig. 2 on the left provides 

an overview of the acquisition infrastructure used during the 

test period.  

 

 
 

Fig. 3: Schematic AICNC hardware interfaces and component 

representation 

The module comprises a consumer market video capture 

device with a resolution of 720p, a processing rate of 30 frames 

per second (fps), and a field of view (fov) of 68.5°. The 

hardware is connected to the AICNC software module at a 

distance of 300 mm above the test specimen. To minimize 

environmental impact and ensure optimal pattern recognition, a 

circular LED illumination system is installed around the capture 

area (see Fig. 2, left). Fig. 2 on the right displays a image of the 

test pattern generation process using the DMU65 milling 

machine. The test pattern comprises of nine distinct areas 

obtained by specific combinations of machine-related 

parameter settings such as feed and cutting. The procedure was 

applied under industrial conditions using the 5-axis CNC 

machining centre DMU 65 monoBlock as a reference system 

[8]. This method can be applied to various machines and 

processes in this sector. To obtain the initial machine parameter 

settings, a literature source was used (the machining manual 

[9]) to specify the material-dependent initial parameters of the 

milling machine. For example, the cutting speed vc was set to 

210 m/min and the feed fz was set to 802.2 mm/min. This 

parameter set can be safely used to obtain sufficient results, but 

there is room for increasing the processing speed according to 

the desired quality criteria. The literature provides an initial 

parameter set, which serves as a starting point for applying the 

generic pattern of AICNC. To identify the parameter set that 

produces optimum part quality, the test pattern is applied with 

eight increasing combinations of cutting speed and milling tool 

feed.  

Table I presents the generic pattern parameter set used in the 

experiment to identify material-dependent processing potential 
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based on the predefined machine setting. No changes in content 

have been made. The identified potential results in increased 

processing speed, leading to significant time and cost savings 

compared to the standard parameter settings manually. 

 
Fig. 4: a,c: AICNC test pattern model; b,d: AICNC manufactured test 

pattern reference sample probe 

Fig. 3 shows the corresponding hardware component context 

and provides an overview of the communication and energy 

interface setup used in the experiment. The project aimed to 

minimize investment and integration costs by using widely 

available hardware components and communication interfaces. 

In later stages, the software-based compensation can replace the 

illumination system to account for environmental disturbances. 

 
Fig. 5: “Record” tab UX-representation 

Fig. 4. provides an exemplary overview of the generated test 

patterns and the resulting defect occurrence according to the 

machine parameter set of Table I. The pattern layers have a size 

of 140 x 140 mm and a thickness of 5 mm. The type of material 

used within the development test procedures was a rigid 

Polyvinyl Chloride (PVC) synthetic plastic polymer. The 

typical material parameters are density: 1.3 to 1.45 g/cm3, 

thermal conductivity: 0.14 to 0.28 W/mK, and yield strength of 

1450 to 3600 MPa [9]. The generic circular patterns were 

generated with a diameter of 30 mm and the square patterns 

with an edge length of 30 mm. According to the reference 

values found in the literature, the machine feed can be increased 

up to step three to obtain results of equivalent quality to step 

one, compare Fig. 4 – circular pattern. The same result is 

obtained for the square pattern. According to the square 

samples in pattern seven, an increased cutting speed also leads 

to adequate quality results.  

 
Fig. 6: AICNC HMI-interface architecture 

 

This effect was observed during several test runs. The AI-

based parameter prediction tool AICNC automatically clusters 

the results and stores the samples in a data space according to 

the good/bad AI-based assessment result. The algorithm is now 

able to interpolate and provide a material-specific, machine-

optimized parameter set. Fig. 6 represents the pre-processed 

training pattern image files generated from each test run of the 

milling machine. 

 

 
Fig. 7: Left: Generic sample pattern edge and centroid detection 

result right: AICNC segmented test pattern reference sample image 

III. AICNC USER INTERFACE AND WORKFLOW REPRESENTATION 

The AICNC user interface workflow is generally divided into 

four specific task tabs that guide the user through the necessary 

steps. The AICNC application communicates directly with the 

hardware-specific image acquisition and clustering methods. 
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Additionally, the DNN represents a separate software instance 

that is connected to the functional interfaces of the AI training 

and assessment tabs, compared to Fig. 7.  

 

In an initial step, the user connects the desired image/video 

capture device at the 'record' tab. This view allows the user to 

capture images of the connected device. The “clustering” 

method performs a segmentation process that includes 

subroutines for image scaling, edge detection, and centroid 

detection. The captured images of the generic sample patterns 

are counted according to the centroids found by the algorithm. 

After the segmentation is finished, the sliced patterns are stored 

in a common folder. Specific working folders can be selected 

in the 'working folder' tab. The specified working folder 

contains the raw image data and the segmented training images. 

The 'parameter prediction' tab is mainly a user interface that 

supports the manual classification process of the captured 

training images. The captured and segmented sample patterns 

are loaded and analysed by the user. The OK (good) and NOK 

(defective) buttons save them to the appropriate DNN training 

folders. Finally, the “AI-training” tab uses database images to 

train predefined material patterns. To increase the accuracy, 

different material types can be used in the DNN pre-training 

process. The trained deep neural network (DNN) provides a 

feedback value indicating whether the assessed samples meet 

the OK or NOK criteria. Additionally, it generates an activation 

map of the heat layer, highlighting the significant features of 

the generic sample pattern. The activation map (heat activation 

layer) is correlated with the backward mapping, which 

identifies the important image features of the damaged parts. 

 

 
Fig. 8: AICNC Application Workflow 

 

Fig. 7 represents the user view in the 'record' tab. Correctly 

captured and segmented images are indicated by green-light 

feedback. Additionally, a continuous system log will be created 

to validate the user feedback over time. This is important to 

correlate differences in the detection accuracy according to the 

DNN training process. Fig. 9 represents the AICNC training 

and assessment tab. This tab provides access to software 

methods for the DNN training procedure. Once the training 
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process is complete, the system is compatible with a wide range 

of video capture devices. The assessment button segments the 

latest captured image and generates a confidential value 

indicating whether the captured image is OK or NOK 

Additionally, the activation layer display indicates the area and 

impact of defects according to the intensity colour overlay 

provided by the user interface. The usage of AICNC is divided 

into two main user-driven workflows. The initial workflow 

targets sample pattern recording and pattern slicing, comp. Fig. 

8 left. Folders are automatically generated and each pattern of 

the recorded sample probe is sliced into square patterns and 

numbered by software. Labelling of each probe is done by the 

applicator at the second workflow, comp. Fig. 8 right. The 

second workflow concerns the creation of labelled image data 

for the DNN training process. The assessed image data will be 

saved in the corresponding training folders by software. DNN 

training environment and result validation 

The DNN training procedure was performed with 30 ’good’ 

rated and 43 ’defective’ rated images. With 75 training 

iterations and 150 training epochs. The training PC includes a 

Core i5-7600K processor with a 3.79 GHz clock rate and 16 GB 

RAM. The operating system is based on WIN 10 Pro. The 

training was performed on a single CPU at a period of 4:22 

minutes to reach a validation accuracy of 60 %. The DNN 

structure is based on the ’SqueezeNet’ architecture with 

exchanged input layers. SqueezeNet is a deep neural network 

architecture originally developed to reduce the number of 

parameters and memory size compared to other neural 

networks, see Table II. This architecture consists of several 

Convolutional Layers, Max Pooling Layers, Fire Layers, a 

global average Layer, a Fully Connected Layer, and an Output 

Layer.  

 
Fig. 9: Representation of the AICNC Teaching and Assessment tab 

 

The input layer supports images as input with a resolution of 

227 x 227 and three colour channels, i.e. for RGB images. The 

image is then convolved with a Convolutional Layer with 64 

kernels with the dimensions 3 x 3. Behind the Convolutional 

Layers, there is a ReLU-activation function and then the output 

matrices are passed in a max-pooling layer. After that, there are 

8 so-called Fire Modules. Each of these fire modules consists 

of a squeeze layer, an expand layer with a filter dimension of 1 

x 1, and an expand layer with a filter dimension of 3 x 3.  

 

 
Fig. 10: The architecture of the Adapted Fire Module [10] 

The squeeze net consists of a single convolution layer that 

reduces the number of input channels to a smaller value. This 

reduces the dimensionality of the input and allows for more 

efficient processing. The expansion process consists of a 

combination of 1 x 1 convolution layers and 3 x 3 convolution 

layers that increase the number of channels to a higher level. 

This combination allows complex features to be captured 

without requiring too many parameters. 

After these fire modules follow another Convolutional Layer 

and a ReLU activation function, compare Fig. 10. A Global 

Average Pooling Layer follows this. A fully connected layer 

was added to the network structure. This consists of two layers, 

which reduces 1000 parameters to two parameters. From these 

parameters, the probabilities for the classes "good" and 

"defective" can be calculated with the help of the Softmax 

function [10]. 

 
Table II: The architecture of the adapted SqueezeNet DNN [10] 

Layer Number Layer Description 

1 Input Layer 

2 Convolutional Layer 

3 ReLU-Activation-Function 

4 Max-Pooling 

5 Fire Module 1 

6 Fire Module 2 

7 Max-Pooling 

8 Fire Module 3 

9 Fire Module 4 

10 Max-Pooling 

11 Fire Module 5 

12 Fire Module 6 
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13 Fire Module 7 

14 Fire Module 8 

15 50% Dropout 

16 Convolutional Layer 

17 ReLU-Activation- Function 

18 Global-Average-Pooling 

19 Fully-Connected-Layer 

 

In the presented use case, an ADAM-optimization function 

was used to optimize the learnable weights and bias 

parameters. ADAM-Optimiser is an optimization algorithm 

for the gradient descent method. ADAM is a further 

development of the RMSProb and AdaGrad optimizers. 

However, ADAM also incorporates momentum to improve 

convergence speed. After calculating the gradient 𝑔𝑡, the 

moving average of the first and second moments of the 

gradients is calculated: 

 

𝑚𝑡 = ß1 ∗ 𝑚𝑡−1 + (1 − ß1) ∗ 𝑔𝑡                                           (1.1) 

 

𝑣𝑡 = ß2 ∗ 𝑣𝑡−1 + (1 − ß2) ∗ 𝑔𝑡
2                                            (1.2) 

 

ß1 and ß2 are the decay factors for the moving average. The 

default values are used for ß1=0.9 and ß2=0.999. 

Subsequently, this is used to calculate the bias-corrected first 

moment estimate: 

 

𝑚̂𝑡 =
𝑚𝑡

1 − ß1
𝑡                                                                              (1.3) 

 

𝑣̂𝑡 =
𝑣𝑡

1 − ß2
𝑡                                                                                (1.4) 

 

The updated parameters can now be calculated based on the 

following formula: 

 

𝜃𝑡 = 𝜃𝑡−1 −
𝛼𝑚𝑡

√𝑣𝑡+∈
                                                               (1.5)  

 

𝜃𝑡 is the updated vector of parameters at time t. 𝛼 

corresponds to a fixed step size Element is a small value added 

to stability to avoid dividing by zero. The parameter update is 

divided by the adaptive learning rate using the corrected 

moment estimator and the square root of the corrected second-

moment estimator. The SqueezeNet was trained with a step size 

𝛼 of 0.0001. In addition, a learning rate schedule of a Drop 

factor of 0.7 every 10 epochs was added. An epsilon of 1e-8 

was used [11]. A more detailed view at the network structure 

can be obtained in Fig. 13. The results of the DNN assessment 

are combined in the ’myNDNet-Postprocess’ algorithm and 

superimposed on the corresponding pattern image. The 

superimposing process allows one to evaluate the results and 

identify spots with minor quality. The information is displayed 

to the user in a separate view, compared to Fig. 9. A blue 

coloration visualizes a good part. The change of colour from 

green to yellow to red symbolizes the increasing degree of 

damage. Red areas thus indicate defects on the workpiece. 

 

 

 

 
Fig. 11: DNN test pattern training progress and resulting defective test pattern layer activation map 

 

Furthermore, this function provides the possibility to present 

and compare an image to a previously trained DNN 

classification result. Thus, the teaching process does not need 

to be repeated, and validation of the results can be assessed in 

minimum time. As mentioned, Fig. 9 right represents the 

resulting DNN pre-processed test patterns in combination with 

the conclusion sensitivity map overlay. In the left area, the 

acquired sample pattern is visible on the right of the originated 

pattern file. The graphic on the right hand contains related user 

feedback on the AI classification result. It indicates whether the 
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submitted milling workpiece is OK or NOK. In addition, the 

recursive activation layer image colours defective areas 

identified by the DNN. The dark red area of the activation layer 

image marks the defective part area. The visualization of the 

size and position of part defectives supports fast-track decision 

support, whether the part can be reworked or not. 

 

 

IV. AICNC DNN ASSESSMENT WORK-FLOW 

   The AICNC workflow is divided into two separate 

processes. Initially, the DNN training procedure has to be 

performed. The training procedure during the development 

system tests is semi-automatised. The acquired test pattern is 

automatically cut into partial patterns that fit the demand of 

the DNN input network layer, compared to Fig. 10. The 

network structure is divided into the input layer, a hidden 

layer, and a fully connected layer. Finally, the class output is 

generated. The application of the used DNN originally targets 

object recognition tasks. Fig. 6 displays the reference pattern 

cuttings, including fully automatized centroid identification. 

The centroid identification algorithm automatically detects the 

weighted pattern centre based on the results of the canny edge 

detector algorithm, compared [12]. Fig. 6 right displays the 

corresponding pattern-cutting images automatically stored in 

the training folder by AICNC. The training images are named 

with increasing numbers. The training process demands a 

cluster of good and a cluster of defective images. With an 

increasing number of training images, the reliability of the 

DNN assessment results can be increased within the 

application of the tool within process usage. Fig. 12 displays 

the real-time visualization overlay of the camera-based 

perception user interface.  For testing purposes, the trained 

DNN was additionally implemented in a consumer-market 

webcam device. 

 

 
Fig. 12: DNN training procedure; left: Milled sample pattern sheet; 

right: perception-based real-time AI defect marking by recursive 

representation of the DNN layer activation 

At least nine individual test patterns were needed within the 

experiment, to obtain an initial indication of the desired 

machine parameter settings. Fig. 12 left displays the milled test 

pattern (camera view), and Fig. 12 right represents the real-

time camera view including activation map overlay. The 

camera is generating real-time class-activation map overlay 

(heat activation layer) with approx. 15-20 fps and indicates 

under the use of phased coloured fields, the occurring extends 

of part defectives. Areas with a high amount of edge and 

surface defects are marked with a dark red colour and indicate 

the degree of activation of the DNN layer according to the 

required features of the part.  

 

 
Fig. 13: AICNC – DNN layer structure, compare [5] 

 

At this stage, the final system can provide reliable user 

feedback that indicates which areas may provide the optimal 

milling parameter set. The second column indicates that areas 

occur with insufficient activation of neurons. This leads to the 

demand to further harden the DNN with extended training data. 

Fig. 14 displays the assessed OK and NOK. sample parts. With 

the initial samples of 20 patterns, a validation accuracy of 60 % 

was reached under laboratory conditions. 20 % false assessed 

image patterns and 20 % with no correlation were achieved 

within the initial experiment. Nevertheless, not every sample 

pattern was classified correctly. Thus, further experiments must 

validate the usability of the system. Additionally, an increased 

database, generated within the industrial system-usage, will 

help to overcome classification problems. Additionally, 

different DNN structures will be tested to increase the testing 

accuracy. Fig. 14 represents the final assessment and labelling 

results by the AICNC-DNN.  
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Fig. 14: Initial results of AICNC performance validation

V. CONCLUSIONS AND DISCUSSION 

To validate the success of the DNN training at the initial 

training status, a random seed of 20 images of the category 

’defective’ was represented and assessed. At the current stage, 

the AICNC has been initially trained using a small number of 

test patterns. The test results from the perception-based real-

time capturing device provide sufficient results to support 

milling parameter identification under industrial conditions. In 

future development steps, the AICNC will be trained under 

industrial conditions with an extended database. Furthermore, 

the network structure has to be replaced by the VGG-19 [13], 

a more specialized DNN structure. This network uses 19 layers 

and is also mainly used for object recognition. Internal tests 

have already shown better results under the use of different 

networks. That means that key users will use the software in 

customer projects. 
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